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The simplest null models for networks, used to distinguish significant features of a particular network from
a priori expected features, are random ensembles with the degree sequence fixed by the specific network of
interest. These “fixed degree sequence” �FDS� ensembles are, however, famously resistant to analytic attack. In
this paper we introduce ensembles with partially-fixed degree sequences �PFDS� and compare analytic results
obtained for them with Monte Carlo results for the FDS ensemble. These results include link likelihoods,
subgraph likelihoods, and degree correlations. We find that local structural features in the FDS ensemble can be
reasonably well estimated by simultaneously fixing only the degrees of a few nodes, in addition to the total
number of nodes and links. As test cases we use two protein interaction networks �Escherichia coli, Saccha-
romyces cerevisiae�, the internet on the autonomous system �AS� level, and the World Wide Web. Fixing just
the degrees of two nodes gives the mean neighbor degree as a function of node degree, �k��k, in agreement with
results explicitly obtained from rewiring. For power law degree distributions, we derive the disassortativity
analytically. In the PFDS ensemble the partition function can be expanded diagrammatically. We obtain an
explicit expression for the link likelihood to lowest order, which reduces in the limit of large, sparse undirected
networks with L links and with kmax�L to the simple formula P�k ,k��=kk� / �2L+kk��. In a similar limit, the
probability for three nodes to be linked into a triangle reduces to the factorized expression P��k1 ,k2 ,k3�
= P�k1 ,k2�P�k1 ,k3�P�k2 ,k3�.
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I. INTRODUCTION

A pivotal question of empiricism is the degree to which
the results of an observation are expected. In ideal cases,
either predictions based on these expectations remain valid
in view of new measurements, or the expectations have to be
changed. But this clear distinction is often blurred by uncer-
tainties resulting from measurement errors, imprecision of
model parameters, or the impossibility of extracting exact
predictions from complicated models. Whether or not the
problem at hand is a typical instance of a wider class of
problems that are already understood is a question of statis-
tical inference. In rare cases, the consequences of the expec-
tations �or the model� can be derived analytically prior to
observation. If this is not feasible, a widely used strategy is
to construct a large number of “surrogates” �1�, or instances
of a well-defined null model encapsulating the expectations,
and to compare the actual observations to this artificial data.

Constructing surrogates is equivalent to simulating a sta-
tistical ensemble. In choosing weights for the ensemble of
surrogates one often uses Occam’s razor—no outcome com-
patible with the null hypothesis should be preferred, and all
such outcomes are equally likely. This is similar to Jaynes’
construction of statistical mechanics by maximizing Shannon
entropy with physically meaningful constraints. Conse-
quently, the numerical construction of surrogates often uses
Monte Carlo methods �2� similar to those used in statistical
mechanics.

This paper addresses properties of ensembles used as null
models for complex networks. Predictions based on the null
models fix expectations, and thereby determine whether or
not deviations in the properties of an actual network are

functionally or historically significant. While the numerical
construction of surrogates of these ensembles has received
attention in the recent literature �3–5�, much less is known
about analytic methods �see discussion below�.

Nowadays networks attract enormous interest as represen-
tations of complex systems. They take various guises in bio-
logical, social, technological, and physical contexts. The
nodes designate distinct degrees of freedom �e.g., agents,
species, genes, magnetic concentrations in the solar photo-
sphere, or earthquakes� and the links identify primary inter-
actions or relationships between pairs of nodes �e.g., coau-
thorship, predator-prey relations, gene regulation, magnetic
flux tubes, or seismic correlations�. For examples see �6–13�.
The ubiquity of networks and their relatively easy visualiza-
tion as graphs, together with notions of universality prevalent
in the physics community, have driven speculations that the
structure of networks can shed light on fundamental prin-
ciples of social or biological organization, such as political
behavior, ecosystem dynamics, brain function or the regu-
lated homeostasis of organisms.

At the simplest level, networks are purely static entities,
with each pair of distinct nodes connected by no more than
one edge �or “link”�. If, in addition, the interaction strength
is disregarded �which often is a very useful simplification�,
the adjacency matrix M for the graph is a square �0,1� ma-
trix. If Mij =1 then an edge points from node i to node j; if
Mij =0 then the edge is absent. Without self-interactions,
Mii=0. For undirected networks, the adjacency matrix is
symmetric, Mij =Mji. The degree ki of node i is then defined
as the number of edges incident on it, ki=� jMji. Several
reviews may be found in Refs. �6,14,15�.

Section II defines more precisely the network ensembles
�or null models� we consider in this paper. Our analytical
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methods focus on ensembles where the total number of links
and nodes in the network is specified as well as the degrees
of a small subset of nodes. These are called ensembles of
“partially fixed degree sequence” �PFDS�. Analytic predic-
tions based on the PFDS ensembles can be compared with
numerical results from a “rewiring” algorithm for ensembles
with fixed degree sequence �FDS�, where the number of
links attached to every node in the network is simultaneously
specified. Section III mainly recalls previous results. We re-
view Monte Carlo methods for sampling the FDS ensemble.
Then we discuss how such null models can be used, and we
conclude by recalling previous analytic approaches. Section
IV discusses some results derived later in Sec. V, namely
analytic estimates of the link likelihood pij �the likelihood for
a link to connect nodes i and j�. It uses them to make pre-
dictions for the average nearest neighbor degree �k��k and for
disassortativity. The calculation in PFDS ensembles simulta-
neously fixing the degrees of two nodes at a time gives an
excellent description of �k��k for large k, e.g., for an Escheri-
chia coli protein interaction network and an AS level map of
the Internet. We also compute �k��k analytically for the case
where the degree distribution is a power law, using Eq. �1�
given below. In that case, the naive approximation for
P�k ,k�� could give divergent or ill-defined results.

Section V contains our main analytic results. In order to
keep the notational clutter of this section to a minimum and
to emphasize the intuitive nature of the results, most inter-
mediate steps are moved to Appendix B. In the limit of large
sparse networks with L links and with the maximal degree
much less than L, we find that the link likelihood depends
only on L and on the degrees k and k� of the two nodes, and
is given by

P�k,k�� � kk�/�2L + kk�� . �1�

This improves substantially over the widely used “naive”
approximation P�k ,k���kk� /2L. Finally, we find an expres-
sion for the likelihood of a triangle, which factorizes in the
same limit of large sparse networks �and when all three
degrees are much larger than 1� to P��k1 ,k2 ,k3�
= P�k1 ,k2�P�k1 ,k3�P�k2 ,k3�, with P�k ,k�� given again by Eq.
�1�. The paper ends in Sec. VI with a discussion and an
outlook to further problems.

II. NULL MODELS FOR NETWORKS

A. Erdös-Renyi (undirected) graphs

The simplest null hypothesis is that a given network is
completely random, not even the number of links being
specified. The only constraint is on the number of nodes,
which is assumed to be N. Each pair of nodes may be joined
with at most one link. Hence, the number of labeled undi-
rected graphs with fixed N is Z0�N�=2N�N−1�/2. This quantity
is the number of ways undirected links may be placed in
� N

2
�=N�N−1� /2 possible positions. A statistical ensemble is

obtained by assigning weights to each graph. The most natu-
ral choice is to weight each graph with L links by a factor pL,
where p is the probability that two given nodes are connected

by a link. This gives the average number of links as L̄

= pN�N−1� /2. The average degree of a node, i.e., the aver-

age number of links attached to it, is then k̄=2L̄ /N= p�N
−1�, and the degree distribution is binomial. In the limit of
sparse networks, where p→0 for N→� such that pN
→const, the degree distribution �or the probability P�k� that
a node has k links� becomes Poissonian,

P�k� =
k̄k exp−k̄

k!
. �2�

While this ensemble can be viewed as a “grand canoni-
cal” version of the Erdös-Renyi ensemble �16� since the par-
ticle fugacity is fixed, it is more customary to associate
Erdös-Renyi graphs with a different ensemble where the total

number L of links is fixed, rather than just the average L̄.
Park and Newman refer to the ensemble with fixed L as
“canonical” �17,18�, making an analogy between the number
of links and the number of particles in traditional statistical
mechanics. However, we shall refer to this ensemble, and
ensembles with similar hard degree constraints, as microca-
nonical.

Excluding self-connections as well as multiple edges be-
tween any pair of nodes gives

Z1�N,L� = �
	lg,N


	L


1 = ��N

2



L
� �3�

distinct labeled, undirected graphs with fixed N and L �19�.
The subscript “	lg,N
” indicates a sum over labeled graphs
with N nodes, while the superscript 	L
 on the sum indicates,
as in later formulas, the constraints on the edges. The sub-
script “1” on Z indicates that Z1 is the number of undirected
graphs with one �global� hard constraint on the links, just as
Z0�N� is the number of undirected graphs with zero con-
straints on the links.

With no further knowledge or constraints on the network,
Occam’s razor suggests assigning equal weight to each la-
beled graph satisfying all the hard constraints. This corre-
sponds exactly to the construction of microcanonical en-
sembles in statistical mechanics. For Z1, each node has equal
probability to be connected to any other node. It is easy to
show �20� that the distribution for the number of links at-
tached to each node is again Poissonian for sparse networks
with large N, where the grand canonical and microcanonical
ensembles become equivalent.

In contrast, observations of real networks reveal fat-tailed
degree distributions, which differ starkly from the situation
where each node has equal likelihood to be connected to any
other node. The most salient consequence is that the average

degree k̄ fails to characterize the connectivity of the nodes; in
particular it cannot account for the dominant nodes or “hubs”
with many links, which would not typically appear in the
Erdös-Renyi ensemble.

B. Ensembles with fixed degree sequences

As a result, attention has moved to ensembles that build
additional information into the null hypothesis about the
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“distinguishability” or diversity of the nodes. Although many
different and equally plausible ways to account for diversity
can be imagined, to begin we focus on the most popular
contemporary method. This uses the random ensemble of
labeled graphs with fixed degree sequence �FDS� as the rel-
evant null model. The complete degree sequence simulta-
neously fixes all the one-node properties for each member of
the ensemble, without reference to their relationships �or
links� in the network. Obviously, it is straightforward to ob-
tain the degree sequence for any network, and there exist
numerical methods to estimate characteristic properties of
the corresponding FDS ensemble �see Sec. III�.

The microcanonical FDS ensemble is specified by assign-
ing a specific degree �=number of links� to each node, ki for
i=1, . . . ,N, and giving equal weight to each graph with this
degree sequence, while giving zero weight to all those
graphs which have a different degree sequence. The null hy-
pothesis for any observable pertinent to a specific graph G
with adjacency matrix MG is then obtained by taking its
expectation value in the FDS ensemble with the same degree
sequence. For undirected graphs excluding self-interactions,
the FDS partition sum is the number of symmetric �0,1� ma-
trices with zeroes on the diagonal and with fixed marginal
sums, which can be written according to our previous con-
vention as

ZN�N,L,k1,k2, . . . ,kN−1� = �
	lg,N


	k1. . .,kN


1 �4�

with k1+k2+ ¯ +kN=2L. For most networks of physical in-
terest, ZN is astronomically large compared to one, but van-
ishingly small compared to Z1. For instance, Chen et al. �5�
numerically estimate the number of 12�12 �0,1� matrices
with each row and column sum equal to 2 �and with no
restrictions of symmetry or vanishing diagonal� to be
�2.196�1016, which agrees well with the exact number
found by Wang and Zhang �21�. This number is much
smaller than the number of all 12�12 �0,1� matrices with 24
ones, which is � 122

24
��1.69�1029. Despite efforts by these

and other mathematicians over decades �21,22�, no well-
developed, exact analytical approaches are known for these
combinatorial problems, but advanced computational meth-
ods exist, as described in Sec. III.

C. Partially fixed degree sequences

On the one hand, the difficulty of enumerating the number
of graphs in the FDS ensemble suggests strong correlations
in the graphs, since similar problems in systems lacking cor-
relations can often be solved exactly. Indeed, the FDS en-
semble makes very different predictions from the Erdös-
Renyi �ER� ensemble, showing that taking into account some
information about the nodes’ degrees is crucial.

On the other hand, it might be the case that not all the
constraints in the FDS ensemble must be taken into account
simultaneously. After all it is the simultaneous fixing of all
the marginal sums in the matrix that makes the calculation of
ZN difficult. Perhaps taking into account all the constraints,
but not requiring them to be simultaneously enforced, is al-

ready sufficient to capture some nontrivial aspects of the
FDS ensemble. If this is possible, then we must also identify
which specific small subset of the nodes’ degrees gives the
most reliable estimate of various expectation values in the
FDS ensemble.

Here, we study ensembles where the degrees of a very
small subset of the nodes are simultaneously fixed—the
other degrees being arbitrary up to the constraint on the total
number of links. We also demand that no more than one link
may connect any two nodes in the network, and disallow
self-connections. All graphs satisfying these constraints have
equal weight. Those not satisfying these constraints are given
zero weight. These ensembles can all be viewed as suben-
sembles of the ER ensemble. For each possible degree sub-
set, we calculate the different partition functions correspond-
ing to all possible subgraphs of a certain size. From these we
can approximate expectation values of various quantities in
the FDS ensemble.

In the following we shall always label the nodes such that
the first m degrees, k1 , . . . ,km, are fixed. We call the resulting
ensembles PFDS�m+1�: partially fixed degree sequence with
m+1 constraints �the final constraint comes from fixing the
number of links, L�. Clearly, putting more constraints on the
ensemble of labeled graphs diminishes its size until, when
each and every edge is specified, the ensemble contains just
one member—the real network G being studied. For en-
sembles with increasing numbers of link constraints this im-
plies that Zm+1 decreases monotonically with m+1, and

1 � ZG � ZN�N,L,k1,k2, . . . ,kN−1�

� Zm+1�N,L,k1, . . . ,km� � Z1�N,L� �5�

for 1�m�N−1.
We find that fixing only the degrees of the nodes partici-

pating in the small subgraph �e.g., link or triangle� under
consideration, with explicit exclusion of self-connection and
multiple connections between any nodes, already gives a
good approximation to the disassortativity �and to other
properties� in the FDS ensemble. As noted above, this uses
information about the whole degree sequence, but in each
contribution corresponding to one specific �labeled� sub-
graph only part of this information is used.

The information stored in the degree sequence is most
important when its distribution is very wide. Even for net-
works exhibiting broad degree distributions, such as protein
interaction networks or autonomous system maps of the In-
ternet, it is sufficient to fix the degrees of the node pairs
directly involved �as well as the total number of links in the
network� to obtain a good estimate of the mean neighbor
degree, �k��k, and of the disassortativity �i.e., the tendency of
nodes with low degree to connect to nodes of high degree,
and vice versa �23��. The mean neighbor degree �k��k is de-
fined as

�k��k =

�
k�

k�N�k,k��

�
k�

N�k,k��
, �6�

where N�k ,k�� is the average number of links between nodes
with degree k and nodes with degree k� in a given ensemble
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�see Sec. IV for a more detailed discussion�. In order to
estimate the number of triangles �i.e., the clustering�, one has
to fix the degrees of node triples. If we fix in addition the
degrees of �some� hubs, this slightly improves the approxi-
mations. It is much easier to make analytical calculations for
small m, with the smallest meaningful m being the size of the
subgraph being considered. Hence for link likelihoods and
for �k��k this minimum is m=2, while for triangle likelihoods
it is m=3. By comparing analytic properties of the
PFDS�m+1� ensemble with numerical estimates of the FDS
ensemble, we can assess to what extent the correlations in
the PFDS ensembles resemble those in the FDS and in the
ER ensembles.

To begin, we shall focus in Sec. IV on the link likelihood,
pij, which is the probability that a randomly chosen graph
from the ensemble contains an edge from node i to node j.
From this microscopic quantity one can calculate the stan-
dard degree-degree correlations that are commonly compared
with real-world networks to identify statistically significant
features. Details of the calculation of pij are deferred to Sec.
V �and to Appendix B�. There we will also treat the gener-
alization to m�3 which is needed in order to estimate the
frequencies of higher order quantities such as motifs �24�. As
an example of a motif calculation, we include an estimate of
the number of triangles.

III. BACKGROUND

A. Monte Carlo algorithms to estimate the FDS ensemble

As for many other problems where one wants to sample
complex instances from some well-defined ensemble, here
two basic strategies predominate: Markov chain Monte Carlo
and sequential sampling �4,25,26�. For the present case, the
most obvious and popular Markov chain algorithm is the
rewiring algorithm �3,27–30�. We describe it here for di-
rected graphs; the generalization to undirected graphs is im-
mediate. We start by making an initial network with N nodes,
no self-connections, and the desired degree sequence, but
without paying attention to multiple links between pairs of
nodes �31�. The Monte Carlo algorithm proper consists of a
sequence of moves, randomly chosen from a move set,
which continues until equilibrium �i.e., uniformity of sam-
pling� is reached with sufficient accuracy. A move is initiated
by choosing randomly four different nodes i, j, l, and m with
Mij �0 and Mlm�0. If either Mim�0 or Mlj �0, a null
move is performed �the graph is left as it is�. If neither of the
pairs 	i ,m
 and 	l , j
 were already connected by a link, Mij

and Mlm are each decreased by 1, while Mim and Mlj are
increased by 1. This corresponds to swapping one pair of
links.

It can be shown easily that this algorithm eventually leads
to a graph without multiple links �provided such a graph
consistent with the fixed degree sequence exists�. After this
happens, the algorithm satisfies detailed balance �any se-
quence of moves is equally likely to be chosen as its reversed
sequence� and is ergodic �each graph with the same degree
sequences can be reached by a suitable move sequence.� As
shown in �28�, ergodicity is not strictly satisfied, but the few

exceptions can be taken into account by including three-link
exchanges in the move set.

Sequential sampling proceeds, in contrast, by repeatedly
building a new graph from scratch. For this we start with an
empty adjacency matrix and fill its entries randomly. In the
simplest version, this is done without paying any attention to
the degree sequence, to the absence of self-loops, or to the
exclusion of multiple links. Instead, the candidate graph is
discarded if any of these constraints are violated. In this way
the uniformity of the sampling is guaranteed, but the attrition
�i.e., the chance to reach an illegal configuration� is over-
whelming, rendering the algorithm useless. But there are
more sophisticated options for sequential sampling. The most
efficient algorithm studied in the literature �5� uses detailed
mathematical results for the structure of legal adjacency ma-
trices �32� to bias the matchings in a much more clever way.

B. Uses of null models

Statistically significant deviations between a null model
and a real network point to organizing laws or historical
accidents that are not accounted for by the null hypothesis.
On the other hand, finding no statistically significant devia-
tions would promote the belief that the entire structure of the
network could be accounted for by the model, e.g., by the
complete degree sequence in case of the FDS ensemble. This
process of building null models can, in principle, be iterated
to understand the full set of organizing principles or physical
constraints on a network: one builds a null model, tests for
significant deviations, and then builds a new null model with
richer structure to try to reduce any significant deviations to
typicality.

Through an application of this discriminatory method,
Maslov et al. �33� showed that a significant part of the dis-
assortativity �23� observed in the Internet could be attributed
to the broad degree distribution together with the restriction
of no multiple links between any pair of nodes. For a scale
free network of N nodes with a degree distribution P�k�
�k−�, the maximum expected degree kc�N� scales as kc�N�
�N1/��−1�. In a random network with no constraints on edge
multiplicities, the expected number of edges between the two
largest hubs would then scale as kc�N�2 /N�N2/��−1�−1. For
��3, this number diverges with N. If the constraint of no
multiple edges is imposed, these links must be distributed so
that they connect the hubs to other nodes. This creates fewer
links between hubs than naively expected, and more links
between hubs and nodes with small degree; it also leads to a
suppression of links between nodes with small degrees �as
the degrees of these nodes are “used up” by connecting to
hubs�. The net effect is that fixing a broad degree sequence
decreases assortativity �the preference for nodes with similar
degrees to be connected to each other� �33�.

On the other hand, Milo et al. �24� have discovered sub-
graphs or motifs that are significantly more frequent in actual
networks than in the corresponding FDS ensemble. Identify-
ing these motifs allows a classification of networks that share
the same motifs. For instance feed-forward loops are over-
represented in gene regulation networks and in some elec-
tronic circuits, while fully connected triangles are most over-
represented in the World Wide Web.
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So, on the one hand we see that the FDS ensemble, to-
gether with nontrivial �power law� degree distributions, al-
lows both discrimination between features of the network
and comparison with other networks; on the other hand, the
ensemble itself exhibits strong correlations. To explain how
these correlations are related to each other and to the degree
sequence it is useful to have an analytic approach. This is
also important if one wants to develop more refined null
models, or study very large networks for which rewiring is
prohibitive. While most authors have considered the FDS
ensemble as the most natural null model for networks, there
have been attempts to generalize to more complex en-
sembles. Maybe the most interesting is due to Mahadevan et
al. �34�.

C. Previous analytic approaches

The present paper builds on papers by Burda et al. �20�
and Berg and Lässig �35�. An alternative strategy to incorpo-
rate information on degree distributions was proposed by
Park and Newman �17,18�. While we fix the degree sequence
	k�m�, m=1,2 , . . .
 exactly, Park and Newman constrain only
the ensemble averages �k�m��. Thus, while our approach is
microcanonical, the one of �17,18� is grand canonical. As in
statistical mechanics, calculations are often simpler in the
grand canonical ensemble, but they are feasible and not too
difficult for the PFDS�m+1� ensemble considered in this pa-
per, with m small. Note that for finite sized networks, the two
ensembles are not equivalent. Further, for a given network,
physical arguments may suggest that one ensemble is more
explanatory than another.

IV. LINK LIKELIHOODS pij AND DISASSORTATIVITY
IN NULL MODELS

For undirected networks, all pairs of nodes with the same
degree have the same likelihood to be connected in the FDS
ensemble. For directed networks the likelihood to form a link
from node i with out-degree kout,i to node j with in-degree
kin,j also depends on kin,i and kout,j. This is demonstrated in
Fig. 1, where the actual link likelihood estimated using a
rewiring algorithm is plotted vs the naive analytic estimate of
the link likelihood kout,ikin,j /L �for pairs in the directed net-
works� or kikj /2L �for pairs in the undirected network�. In
particular, directed networks exhibit a high degree of scatter
for the same values of the connected �out- and in-� degrees,
showing the importance of the other degrees associated with
the pair �in- and out-, respectively�. Further, the likelihood
does not approach the naive estimate for kikj �L. This is due
to the constraint of one link between two nodes and to the
presence of hubs, which thus have to distribute their links to
different nodes.

For any ensemble A, let NA�k ,k�� be the average number
of links between nodes with degree k and nodes with degree
k�. In terms of the link likelihood,

NA�k,k�� = �
i,j

pij,A	�ki − k�	�kj − k�� , �7�

where the sum over i , j indicates a sum over all pairs of
nodes, and pij,A is the link likelihood for ensemble A. If the

ensemble A is the trivial ensemble consisting of just one
network, namely the experimentally observed graph G with
adjacency matrix MG, then pij,A=MG,ij.

Recall the average degree �k��k of neighbors of nodes with
degree k, as given by Eq. �6�. This quantity can be related to
the �dis�assortativity, i.e., the tendency of nodes to connect
�less� preferentially to nodes with similar degree. The assor-
tativity was formally introduced by Newman as the Pearson
correlation coefficient for the degrees of any two nodes con-
nected by an edge �23�. Intuitively, when the average degree
�k��k is an increasing function of k then the network shows
assortative mixing, i.e., nodes of low degree tend to connect
to nodes of low degree and nodes of high degree tend to
connect to nodes of high degree. When �k��k is flat, the net-
work shows no assortativity, and when �k��k is a decreasing
function of k then the network shows disassortative mixing
�36�.

We can compute �k��k in several PFDS ensembles. The
ensemble Z3�k1 ,k2� consists of uncorrelated random graphs
with N nodes, L edges, and no multiple or self-connections,
where we fix the degrees of one pair of nodes. Evidently, we
choose the pair whose link likelihood is being evaluated.
Equation �6� is then calculated by averaging over all pairs of
nodes in the network. This clearly allows us to take the
whole degree sequence into consideration, although only
pairs of node degrees are considered simultaneously. To in-
clude the presence of a hub, we work in Z4�k1 ,k2 ,kmax�, the
ensemble of uncorrelated random graphs with N nodes, L
edges, and no multiple or self-connections, where we fix the
degree of the pair of nodes whose link likelihood is being
evaluated, as well as the degree kmax of the strongest hub.

As shown in Sec. V and in Appendix B, we can compute
�k��k exactly in Z3�k1 ,k2� and Z4�k1 ,k2 ,kmax�, as well as in
the approximate Z3�k1 ,k2� ensemble with pij given by Eq. �1�
�see also Eq. �22� below�, which becomes exact in the limit
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FIG. 1. �Color online� Log-log scatter plot of the naive analytic
estimate of link likelihood kout,ikin,j /L �directed network, St. Martin
foodweb �37�� or kikj /2L �undirected network, Escherichia coli pro-
tein interaction network �38�� versus the ratio of the Monte Carlo
rewiring estimate to the naive estimate for the corresponding nodes.
Note that the directed network has considerably more scatter for
given kout,i ,kin,j.
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of large N for sparse networks, and for kmax�L. In Fig. 2 we
plot �k��k versus k for an Escherichia coli protein interaction
network �38�. The FDS ensemble, as sampled by the Monte
Carlo rewiring procedure, is clearly disassortative, while the
estimate of �k��k using the standard naive estimate pij

=kikj /2L shows no disassortativity or assortativity, as ex-
pected. We note that forbidding self-connection but other-
wise using the naive estimate for pij results in slight disas-
sortativity, while approximate Z3, exact Z3�k1 ,k2�, and
Z4�k1 ,k2 ,kmax� are increasingly refined estimates of the FDS
behavior �see Fig. 2�. Finally, Z4�k1 ,k2 ,kmax� gives only a
slight improvement over Z3, indicating that hubs per se are
less important to global properties such as disassortativity
than constraints such as no self-or multiple connections,
which are already implemented at the level of Z3, along with
information about the whole degree sequence, taken in de-
gree pairs.

The approximate Z3 ensemble is of further interest be-
cause �k��k can be calculated analytically. Note that

N�k,k�� = �
i,j

pij
model	�ki − k�	�kj − k�� = P�k,k��N�k�N�k�� .

�8�

For a power law degree distribution,

N�k� = �� − 1�Nk−�, �9�

where N is the number of nodes in the network and the
degree distribution of the network is a power law with expo-
nent �. In this case the sums over k� in Eq. �6� can be ap-
proximated by integrals, yielding

�k��k =

�
1

�

k�P�k,k��k�−�dk�

�
1

�

P�k,k��k�−�dk�

. �10�

If we approximate P�k ,k�� by Eq. �1�, these integrals can be
solved in terms of hypergeometric functions:

�k��k =
� − 1

� − 2

2F1�1,� − 2;� − 1;
− 2L

k



2F1�1,� − 1;�;
− 2L

k

 . �11�

We note that for �=2.5 the hypergeometric functions can be
expressed in terms of elementary functions:

�k��k =

arcsin�� 2L

2L + k



� k

2L

1/2

− � k

2L

arctan�� k

2L

−1/2
 . �12�

To test the validity of Eq. �11�, we turn to a large network,
specifically Newman’s recent AS level Internet data �39�, for
which L=48436. In �17� it is reported that ��2.2±0.3 for
the Internet; we estimate ��2.1±0.3 for Ref. �39�.

In Fig. 3 we plot the analytic estimates of �k��k given by
Eq. �11� for �=2.3. This value for � gives the best fit for
�k��k and is within the uncertainty of the direct degree distri-
bution measurement of �. For comparison we also show the
results in the approximate Z3 and Z3 ensembles, computed
directly from the degree sequence of �39�, as well as Monte
Carlo rewiring estimates of the FDS ensemble. Note the
strong similarities between the Z3 results and the Monte
Carlo estimates of the FDS ensemble; in particular, we ob-

FIG. 2. �Color online� Average degree of the neighbor �k��k vs
node degree k for an Escherichia coli protein interaction network
�38� in several ensembles. The FDS ensemble, sampled by Monte
Carlo rewiring, shows disassortativity as �k��k is a decreasing func-
tion of k. For the naive estimate pij =kikj /2L and using the exact
degree sequence, there is no disassortativity �while using a power
law as in Eq. �10� leads to divergence�. However, using the naive
estimate but forbidding self-connection results in slight disassorta-
tivity. Approximate Z3, exact Z3, and Z4�k1 ,k2 ,kmax� are increas-
ingly refined estimates of the FDS ensemble. Notice that the latter
two can hardly be distinguished.

FIG. 3. �Color online� �k��k versus k for the Internet at the AS
level from �39�. We plot the analytic estimate of Eq. �11� for �
=2.3; for comparison we plot the results in the approximate Z3 and
Z3 ensembles, computed directly from the degree sequence of �39�,
as well as Monte Carlo rewiring estimates of the FDS ensemble.
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serve a flattening of �k��k for small k both in the Z3 ensemble
and in the Monte Carlo rewiring. This is consistent with the
observations of �17�.

Also note the similar scaling of the various estimates and
of the Monte Carlo results at large k. For the Internet, �k��k

has been reported to scale with k as a power law, �k��k

�k−
 with 
�0.5 �17�. Our Monte Carlo results for the FDS
ensemble, using the degree sequence of Ref. �39�, show in-
deed such a power law for large k, but with 
�0.75. The
exact and approximate Z3 calculations, obtained with the ex-
act degree sequence, give 
�0.7 resp. 0.62. When using a
power law degree sequence and Eq. �11�, the scaling depends
on �. But in this case, one can verify that scaling does not
hold in the large k limit, but in the limit k�L. The curvature
of the continuous line visible in Fig. 3 results entirely from
the fact that k is not much less than L. Thus it is the slope of
the continuous line at small k which should be used for ex-
tracting 
. With this, one finds that 
 varies from �0.79 for
�=2.2 to 0.5 for �=2.5. Note that 
=0.5 for �=2.5 is an
exact result that can be obtained analytically by taking the
limit 2L /k→� in Eq. �12�.

In contrast to the approach of �17�, all of our results can
be computed directly from the degree distribution or the de-
gree sequence, omitting the intermediate step of constructing
a fugacity distribution to match the statistics of the degree
distribution and then extracting �k��k from the fugacities. The
fact that the disassortativity properties of the Internet can be
studied so directly in the simple approximate Z3 ensemble
suggests that Eq. �1� should replace the naive estimate
P�k ,k��=kk� /2L in other applications, for example in the
study of motifs. This is explored in Sec. V B �see Eq. �25��.

For undirected networks and any null model A, Maslov et
al. �33� defined a quantity called the correlation profile
R�k ,k��=NG�k ,k�� /NA�k ,k�� and the Z-score Z�k ,k��
= �NG�k ,k��−NA�k ,k��� /�A�k ,k��, where NA�k ,k�� is defined
as in Eq. �7�, NG�k ,k�� is the analogous quantity for the
trivial ensemble �with pij replaced by MG,ij�, and �A

2�k ,k�� is
the variance of the number of links connecting nodes with
degrees k and k� in ensemble A �remember that NA�k ,k�� was
the average of that number�. The specific null model studied
in �33� was the FDS ensemble. As shown in Appendix A, a
similar analysis can be done comparing different null models
to each other. Results are also discussed in Appendix A.

V. ANALYTIC ESTIMATES OF THE FDS ENSEMBLE
FOR UNDIRECTED NETWORKS

A. Notation and basic identities

We now derive our principal analytic results. Our central
object is the partition function Z, which counts the number of
graphs in the ensemble. The elementary constraints on the
network �N nodes, no multiple or self-connections� imply
that the adjacency matrix M is N�N, is symmetric �for
undirected networks�, has zeroes along the diagonal, and
consists solely of 0’s and 1’s. If we add the constraint of L
links, the partition function can be written as

Z1�N,L� = �
	Mij=0,1


i�j

	�L − �
i�j

Mij
 , �13�

where the sum is over the upper triangle of M due to sym-
metry. A simple computation gives Eq. �3� for the number of
ways to distribute L links among � N

2
� possible pairs of nodes.

Now let us specify the degrees of m of the nodes. We refer
to m as the “order” of a calculation. The partition function
becomes

Zm+1�N,L,k1, . . . ,km� = �
	Mij

i�j

	�L − �
i�j

Mij


� �
l=1

m

	�kl − �
j=1

l−1

Mjl − �
j=l+1

N

Mlj
 ,

�14�

where we use the symmetry of the adjacency matrix to write
the degree constraints in terms of the variables Mij with i
� j.

It will be helpful at this point to introduce some further
notation to assist us in organizing this calculation. We split
the matrix M into four pieces: A, the square submatrix con-
trolling the edges linking the m nodes with fixed degree to
each other; B, the rectangular matrix encoding the connec-
tions of the m nodes of fixed degree with the rest of the
nodes in the graph, and its transpose BT; C, the square sub-
matrix encoding the edges among the N−m remaining nodes
�whose degrees are not specified�. Due to the symmetry of
M, only B and the upper triangular parts of A and C are
independent. In Fig. 4 we present a schematic decomposition
of M.

The sum over all adjacency matrices decomposes into a
sum over the A, B, and C submatrices, with suitable con-
straints. In particular, we write the symbol �	A
 for the sum
over all possible values 	0,1
 of the matrix elements of the
submatrix A. Each term of this sum corresponds to a particu-
lar �possibly disconnected� labeled subgraph involving m
nodes of fixed degree. This is analogous to a diagrammatic
expansion of the partition function, where the partition func-
tion is now written as the sum over all possible subgraphs
involving nodes 1 through m, and each subgraph is weighted
by a degeneracy factor resulting from the summations over B
and C. This degeneracy counts the number of possible graphs

m N − m

N − m

m

0

A B

C
symmetric

FIG. 4. Schematic decomposition of the adjacency matrix M
into the three submatrices A, B, C discussed in the text. Note that
M is symmetric for undirected networks.
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in the ensemble containing that particular subgraph �respec-
tively submatrix� A. The partition function is written in this
notation as

Zm+1 = �
	A


Zm+1�A� , �15�

where Zm+1�A� is the partition function or degeneracy factor
for a given fixed submatrix �equivalently, subgraph� A. For
each Zm+1�A�, the nodes with fixed degrees �i.e., the first m
nodes� are connected in a specified way. Thus, for example,
the probability of some particular m�m subgraph A occur-
ring would be

Prob�A� =
Zm+1�A�

Zm+1
. �16�

As shown in Appendix B, the degeneracy of a given sub-
graph Zm+1�A� can be written as

Zm+1�A� = � �N − m

2



L + �
i�j,=2

j=m

Aij − �
l=1

m

kl�
� �

l=1

m � N − m

kl − �
j=1

l−1

Ajl − �
j=l+1

m

Alj� . �17�

The first term on the right-hand side is the degeneracy
associated with the upper half triangle of the square subma-
trix C. Recall that the submatrix C defines connections be-
tween all N−m nodes not in A, i.e., all nodes with free
degree. This matrix has � N−m

2
� independent places to put a

specified number of 1’s. The number of 1’s in C depends on
L, the total number of 1’s in the entire �upper triangular�
adjacency matrix, minus the number of 1’s from edges that
have at least one end on a node of fixed degree. By defini-
tion, those 1’s cannot appear in C. Due to the symmetry of
the entire matrix, the number of 1’s to be placed in the upper
triangular half of C is L+�i�j,j=2

j=m Aij −�l=1
m kl.

Each factor in the product �l=1
m of Eq. �17� is the degen-

eracy associated with a row in the matrix B. For every such
row there are N−m places to put 1’s, and the number of 1’s
that must be placed in the l-th row is the degree of the node
kl minus the number of 1’s in the corresponding row of the
entire matrix A. This latter number is the degree of the node
within the subgraph A.

B. Calculation of link likelihoods for undirected networks

As a first application we compute the link likelihood for
two nodes in this framework. At lowest order we can just
specify the degrees of the two nodes under consideration,
giving the ensemble Z3 with m=2. For convenience, the two
nodes are labeled 1 and 2. The two possible configurations of
this subsystem, where the nodes are either connected or dis-
connected, must be weighted by the appropriate degeneracy
factors according to Eq. �17�. Let us denote these two con-

figurations by � and ��. In � an edge connects the two
nodes, so �12=1. We denote this “connected” part of the total
partition function Z3

conn=Z3���. In �� there is no edge be-
tween the two nodes, so �12� =0. We denote this “discon-
nected” part of the total partition function Z3

disc=Z3����. The
total partition function is thus Z3

total=Z3
conn+Z3

disc=Z3���
+Z3����, so

p12
�m=2� =

Z3
conn

Z3
total =

Z3���
Z3��� + Z3����

. �18�

From Eq. �17�, the explicit expressions are

Z3��� = � �N − 2

2



L + 1 − k1 − k2
��l=1

2 �N − 2

kl − 1

 , �19�

Z3���� = � �N − 2

2



L − k1 − k2
��l=1

2 �N − 2

kl

 . �20�

Straightforward calculation gives

p12
�m=2� = �1 +

�L + 1 − k1 − k2��N − 1 − k1��N − 1 − k2�
k1k2��N − 2��N − 3�/2 − L + k1 + k2� �−1

�21�

and in the limit L→�, L /N2→0, and ki�L this reduces to

p12
�m=2� �

k1k2

2L + k1k2
= P�k1,k2� . �22�

Thus we have derived the approximate link likelihood given
by Eq. �1�. In the limit k1k2�L we recover from Eq. �22� the
naive estimate k1k2 /2L used by most authors. This naive
estimate is a bad approximation if either node 1 or node 2 is
a hub. In general, the full expression given in Eq. �21� is a
better approximation, although as we have shown in Sec. IV
the approximate Z3 ensemble given by Eq. �22� is both ana-
lytically tractable and significantly better than the naive es-
timate.

The presence of any hubs in the network reduces the link
likelihood between two nodes, particularly nodes of low de-
gree, as their links are “stolen” by the hubs. This effect al-
ready appears in the calculation of the disassortativity, as
shown in Figs. 2 and 3. We can refine the preceding compu-
tation by including constraints on the degree sequence com-
ing from the hubs. We incorporate these constraints from the
hubs by considering the nodes with the highest degrees first.
The partially fixed degree sequence ensemble
Z4�k1 ,k2 ,kmax�, then, includes the two nodes k1, k2 whose
link likelihood we compute �free to vary over all node pairs�
and the largest hub in the network, with degree �kmax�. In the
case that kmax=k1 or k2 we use the next largest hub degree for
the third constraint. In the submatrices A, all possible ways
to connect the three nodes are enumerated. To compute the
link likelihood pij

�m=3� we divide the partition function into
connected Z4

conn and disconnected Z4
disc parts, where con-

nected means an edge connects node 1 and node 2, i.e.,
A12=1. The diagrammatic expansion for the connected sub-
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partition function is shown in Fig. 5�a�, and the disconnected
subpartition function is shown in Fig. 5�b�.

So we can compute the link likelihood as

p12
�m=3� =

Z4
conn

Z4
conn + Z4

disc =
Z4��1� + Z4��2� + Z4��3� + Z4��4�

�
i=1

8

Z4��i�

,

�23�

where �1 to �8 denote the adjacency matrices for the eight
graphs shown in Fig. 5. In Fig. 6 we compare the link like-
lihood pij for an undirected network in the FDS ensemble
�obtained numerically by the rewiring method� to the ana-
lytic results in the ensembles Z3�k1 ,k2� and Z4�k1 ,k2 ,kmax�.
For each pair �i , j� we plot the naive estimate

kikj

2L on the
horizontal axis; the vertical coordinate is the ratio of the
numerical �Monte Carlo� estimate to the naive, no hub, and
one hub estimates for that pair. The Z3 estimate is already a
substantial improvement over the naive analytic estimate,
with slight further refinement coming as expected from the
inclusion of hubs in all the diagrams.

C. Calculation of subgraph likelihoods
for undirected networks

Estimating the likelihoods of larger subgraphs can be
done along exactly the same lines. As an example, we esti-
mate the number of triangles in an undirected network and
test this estimate on an Escherichia coli protein interaction
network �38�, a yeast �Saccharomyces cerevisiae� protein in-
teraction network �40�, two artificial yeast protein interaction
networks created by modifying the degree sequence of �40�
by hand to make it narrower or broader, the Newman AS
level map of the Internet �39�, and a symmetrized snapshot
of the World Wide Web �41�. Working in an ensemble with
four constraints, Z4�k1 ,k2 ,k3�, we consider all permitted
triples of nodes �i , j ,k�, forbidding self- and multiple connec-
tion. Note that node 3 is no longer fixed as the largest hub,
but allowed to range over all nodes. Given fixed nodes 1, 2,
and 3, we can compute the likelihood of a triangle between
them as

p�
�m=3� =

Z4��4�

�
i=1

8

Z4��i�

, �24�

where �4 corresponds to the fully connected subgraph, i.e.,
the last term in the sum of Fig. 5�a�. The resulting combina-
torial expression is quite unwieldy. However, in the limit L
→�, L /N2→0, and 1�ki�L, i.e., the large, sparse network
limit used in deriving Eq. �22� with the additional assump-
tion of 1�ki, we find a remarkable simplification. The ex-
pression factorizes to

p�
�m=3� � P�k1,k2�P�k1,k3�P�k2,k3� , �25�

where P�ki ,kj� is given by Eq. �22�.
We now test these formulas against the various trial net-

works. The results are shown in Table I, where “MC” repre-
sents the averaged triangle count for many Monte Carlo re-
wirings, i.e., a numerical estimate of the average number of
triangles in the FDS ensemble. The only noticeable trend is
the decrease in the absolute value of the% Error �defined as
�Eq. �24� 
 Eq. �25��/ Eq. �24�� between the simple factor-
ized expression of Eq. �25� and the elaborate expression of
Eq. �24� as N increases. This verifies the approximation
made in deriving Eq. �25�. The time required to make the
“complex” estimate given by Eq. �24� is roughly equal to the
time required to count the number of triangles for a single
Monte Carlo instance; the simple estimate given by Eq. �25�
is much faster, running on the WWW data in roughly 90 sec
�on an Intel core duo processor� without any optimization for
speed. We note that in many cases the% Error is rather large
for both approximations �Eq. �24� and Eq. �25��, although of
roughly the same size as the% Error of Ref. �42� for many of
the “triangle” subgraphs in directed networks. In some cases
Eq. �24� appears to be the better approximation, and in others
Eq. �25�. Unlike the case for disassortativity, neither approxi-
mation scheme seems to provide a completely satisfactory
estimate of the number of triangles, and further work is
needed to develop approximations that are better able to cap-
ture this quantity.

Zconn
4 =

1 2

3
+

1 2

3
+

1 2

3
+

1 2

3
(a)

Zdisc
4 =

1 2

3
+

1 2

3
+

1 2

3
+

1 2

3
(b)

FIG. 5. Diagrammatic expansion for the connected �a� and dis-
connected �b� contributions to the partition function Z4 for p12.

FIG. 6. �Color online� Scatter plot comparing estimates of the
link likelihood in an Escherichia coli protein interaction network.

On the horizontal logarithmic axis we plot the naive estimate
kikj

2L ;
on the vertical logarithmic axis we plot for all corresponding nodes
the ratio of the Monte Carlo rewiring estimate to the naive, Z3 �no
hub�, and Z4 �one hub� estimates. The latter two nearly coincide.
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It is tedious to verify similar factorizations for larger mo-
tifs. However, the convergence to Eq. �25� in the predicted
limit provides further evidence for the replacement of the
naive estimate P�k ,k��=kk� /2L used, e.g., in �42�, where
factorizations as in Eq. �25� were assumed, with Eq. �22�.
This will be the topic of future work. Such extensions of our
method can also be used to study larger motifs in complex
networks �43,44�, or to study large networks where compu-
tational time for rewiring grows prohibitively, but the ap-
proximation underlying Eqs. �22� and �25� should still be
valid.

VI. CONCLUSION

Detecting and describing local structure is an important
frontier in the study of complex networks, as many of the
features distinguishing real-world networks from their ran-
dom analogs or null models are local: degree-degree corre-
lations, motifs, and so forth. One of the major obstacles to
this project is the lack of analytical techniques to study the
fixed degree sequence ensemble, which is the most common
null model for complex networks associated with the rewir-
ing method. In this paper we have reviewed the numerical
tools for studying the FDS ensemble and discussed some of
the practical uses �e.g., disassortativity, motif calculation,
correlation profiles� to which knowledge of local structure
can be put. Through a careful study of the partition function
of the FDS ensemble and the PFDS ensembles containing it,
we derive simple and general combinatorial expressions that
improve naive estimates of the link likelihood by explicitly
including important constraints from the FDS ensemble �the
exclusion of multiple edges and self-connections, and the
appearance of a broad range of degrees� in a “Gaussian” type
approximation where the set of degree constraints are treated
minimally but nontrivially.

In particular, for undirected networks we have developed
the analytically tractable approximate Z3 ensemble, where
the link likelihood P�k ,k��=kk� / �2L+kk�� �Eq. �1�� gives
clear disassortativity, while the naive estimate kk� /2L does
not. We have also introduced a diagrammatic expansion of
the PFDS partition function, which organizes the combinato-
rial calculations usefully and leads to a simple, approximate
factorized formula for the estimated number of undirected
triangles between three nodes, P�

�m=3��k1 ,k2 ,k3�
= P�k1 ,k2�P�k1 ,k3�P�k2 ,k3� �Eq. �25�� where k1, k2, k3 are

the degrees of the three nodes. The factorization suggests the
application of Eq. �22� to extended local structures such as
motifs.

It should be emphasized that these analytic results are not
merely useful for the null model they have been explicitly
developed to approximate �the FDS ensemble�. They also
provide guidance in developing more complicated null mod-
els that incorporate higher-level constraints. The astronomi-
cal Z-scores observed in work on extended motifs �43,44�
dramatize the need for such extensions, which might con-
strain, for example, the number of triangles in addition to the
number of nodes, number of links, and a few degrees. Fur-
ther work will explore applications of the approximate Z3
and other PFDS ensembles to motif estimates, as well as the
incorporation of higher-level constraints in the PFDS en-
semble to improve likelihood estimates of extended motifs.
The extension of the results of this paper to directed net-
works is in preparation.
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APPENDIX A: COMPARING NULL MODELS VIA THE
CORRELATION PROFILE

We can study how the real network deviates from various
null hypotheses by calculating R�k ,k�� with respect to vari-
ous null hypotheses. This provides an overall measure of
how close the ensembles are to each other and helps establish
the relevant features that distinguish the real network from
the different ensembles.

In general, we can define correlation profiles and Z-scores
for any pair �A ,B� of ensembles:

RA�B�k,k�� =
NA�k,k��
NB�k,k��

�A1�

and

TABLE I. Comparing estimates of the total number of triangles in various networks with N nodes. MC refers to Monte Carlo rewiring
estimates of the FDS ensemble. As expected, the results of Eq. �24� approach the asymptotic result, Eq. �25�, for large, sparse networks.

Network N Eq. �25� Eq. �24� MC
% Error

Eq. �25� vs Eq. �24�
% Error

Eq. �25� vs MC
% Error

Eq. �24� vs MC

E. coli 230 215.82 289.65 322.14 25.49 33.01 10.09

Yeast�narrow� 1373 302.77 247.65 339.10 −22.26 10.71 26.97

Yeast 1373 651.07 592.59 1160.39 −9.87 43.89 48.93

Yeast �broad� 1373 1553.94 1667.70 2813.37 6.82 44.77 40.72

AS Internet 22963 29157.38 31840.23 37810.68 8.43 22.89 15.79

WWW 325729 379371.15 379706.63 274926.89 0.09 −37.99 −38.11
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ZA�B�k,k�� =
NA�k,k�� − NB�k,k��

��A
2 + �B

2
. �A2�

In particular, we can calculate the correlation profile for the
numerically sampled FDS ensemble and the ensemble
Z3�k1 ,k2�. Recall that the ensemble Z3 consists of uncorre-
lated random graphs with N nodes, L edges, and no multiple
or self-connections, where we fix the degree of the pair of
nodes whose link likelihood is being evaluated. We might
also compare the FDS ensemble to Z4�k1 ,k2 ,kmax�, the en-
semble of uncorrelated random graphs with N nodes, L
edges, and no multiple or self-connections, where we fix the
degree of the pair of nodes whose link likelihood is being
evaluated, as well as the degree of the largest node in the
network, kmax. In Z3 and Z4, pij can be calculated exactly �see
Sec. V�. We plot RZ3�FDS�k ,k�� for the Escherichia coli pro-
tein interaction network in Fig. 7. It is clear that the Z3 en-
semble captures many of the features of the FDS ensemble,
as RZ3�FDS�k ,k�� is close to 1 for all k, k�. RZ4�FDS�k ,k�� ex-
hibits slight improvement over Z3, as expected �data not
shown�. The correlation profile allows us to identify correla-
tions due to the degrees of the other nodes in the network
and provides a test of our hypothesis that the PFDS ensemble
captures much of the structure of the FDS ensemble.

APPENDIX B: DERIVATION OF Zm+1

FOR UNDIRECTED NETWORKS

We note that the number of possible undirected subgraphs
of m nodes is 2�m2−m�/2. So we write

Zm+1�N,L,k1, . . . ,km�

= �
	Aij


�
	Bij


�
	Cij


	�L − ��
i�j

j=2

j=m

Aij� − � �
i�m

j=m+1

j=N

Bij�
− � �

i�j

i=m+1

i=N

Cij���l=1

m

	�kl − �
j=1

l−1

Ajl − �
j=l+1

m

Alj − �
j=m+1

N

Blj
 .

�B1�

For concision we henceforth write the sum more com-
pactly, as in the next equation.

We now Fourier transform the delta functions:
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We can do the sum over Bij, yielding
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Performing the standard binomial expansion yields
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Integrating over a1¯am sets nl=kl−� j=1
l−1Ajl−� j=l+1

m Alj, so
we have
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We now sum over Cij and perform the binomial expansion
of the resulting quantity:
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FIG. 7. �Color online� Correlation profile RZ3�FDS�k ,k�� for the
Escherichia coli protein interaction network �38�. Note that the dark
regions �blue online� are artificially set to the value .7; they corre-
spond to values of �k ,k�� for which no data exist.
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where we have used the fact that

�
l=1

m

eız��j=1
l−1Ajl+�j=l+1

m Alj� = eız��l=1
m ��j=1

l−1Ajl+�j=l+1
m Alj�� = e2ız�l�j

j=2

j=m
Alj

by the symmetry of the adjacency matrix. We may now in-
tegrate over z to give the result:

Zm+1�N,L,k1, . . . ,km�
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 � �N − m

2
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m
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This can be written as a sum over subpartition functions
Zm+1�A�, each of which is given by Eq. �17�. Thus we re-
cover the result for fixed A given in Sec. V.
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